CRYSTAL STRUCTURE OF N-(2,6-DIMETHYLPHENYL)CHLOROMALEINIMIDE

Viktor Vrábel ${ }^{a}$, Eleonóra Kellö ${ }^{a}$, Ján Lokaja and Václav Koničn ${ }^{\text {a }}{ }^{b}$
${ }^{a}$ Department of Analytical Chemistry, Slovak Technical University, 81237 Bratislava and
${ }^{b}$ Research Institute of Chemical Technology, 83106 Bratislara

Received October 21, 1988
Accepted January 2, 1989

Abstract

The crystal structure of N -(2,6-dimethylphenyl)chloromaleinimide solved by the heavy atom method was refined by the 9×9 block-diagonal matrix least-squares method to a final R value 0.08 for 1147 observed diffractions. The compound crystallizes in the orthorhombic system with Pbca group and lattice parameters $a=13.622(4), b==13.483(7), c=12.768(6) \AA, Z=8$. Monomeric units, between which interactions of type $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{C}$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ occured, formed the crystal structure. Both moieties of the molecule, i.e. the phenyl and the five-membered maleinimide rings were found to be virtually planar and the central planes intersecting these rings form an angle 78.3°.

The crystal and molecular structures are very important factors when studying the relationship between biological activity and constitution; they would throw more light on the problem to find a direct dependence between these two variables in the future, although some correlations between the structure and biological activity of compounds used in agriculture ${ }^{1,2}$ or pharmacy ${ }^{3,4}$ did always not lead to successful conclusions.
2.6-Dimethylaniline is an important starting material for the synthesis of the herbicide Dual (2,6-dimethyl-N-(1-methyl-2-methoxyethyl)chloroacetanilide) and, due to its availability, also for preparation of further new preparations useful in preventing agricultural products. As found, a series of these compounds exerted a remarkable fungicidal activity; one of them is N -(2.6-dimethylphenyl)chloromaleinimide. To get more information on the structure-biological activity relationship, we decided to subject this compound to X-ray analysis.

EXPERIMENTAL

Monochloromaleic Anhydride
Benzoyl peroxide (2 g) and iron file dust (2 g) were added to a freshly distilled maleic anhydride (1 mol). The stirred mixture was heated to $60^{\circ} \mathrm{C}$ and chlorine was introduced at such a flow rate

$$
1 \AA=10^{-10} \mathrm{~m}
$$

to keep the temperature between 60 and $80^{\circ} \mathrm{C}$ under a slow evolution of HCl . Totally 1.1 mol of chlorine was added; afterwards, the mixture was heated to $180^{\circ} \mathrm{C}$ and distilled under reduced pressure (1.6 kPa). The distillate was rectified (b.p. $90-92^{\circ} \mathrm{C}, 1.6 \mathrm{kPa}$) to furnish the title product as yellowish liquid in 76% yield.

N -(2,6-Dimethylphenyl)chloromaleinimide

Monochloromaleic anhydride (1 mol) was added to a stirred solution of 2,6 -dimethylaniline $(1 \mathrm{~mol})$ in toluene (600 ml). The mixture was refluxed to remove the reaction water, the solvent was distilled off under reduced pressure and the remaining product was crystallized from ethanol to afford white crystals, m.p. $95^{\circ} \mathrm{C}$ in 72% yield. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{2}$ (235.7) calculated: $61 \cdot 16 \% \mathrm{C}$, $4 \cdot 28 \% \mathrm{H}, 5 \cdot 94 \% \mathrm{~N}$; found: $60 \cdot 95 \% \mathrm{C}, 4 \cdot 32 \% \mathrm{H}, 5 \cdot 97 \% \mathrm{~N}$.

Crystallographic Parameters and Crystal Structure Determination

Density of the crystals was deternined by the flotation method in aqueous ZnSO_{4} solution at room temperature. The investigated crystal ($0.2 \times 0.2 \times 0.2 \mathrm{~mm}$) was measured on a four-circle Syntex $\mathrm{P} 2_{1}$ diffractometer using a nickel monochromated $\mathrm{CuK}_{\alpha}(\lambda=1.5418 \AA)$ radiation. The lattice parameters were refined on the basis of 15 centred reflections ($13<2 \Theta<30^{\circ}$). Intensities were measured with the scan technique $\omega / 2 \theta$ within the diffraction angle $0^{\circ}<2 \Theta<110^{\circ}$ at room temperature. Of the total 1473 recorded independent reflections ($0 \leqq h \leqq 14,0 \leqq k \leqq 14$. 0 . 13), 1147 were classified as observed and employed for the structure solution. The crystal was recentred after each 100 reflections. Intensities of $\mathfrak{t w o}$ standard reflections (021 and 321) did not teveal significant fluctuation (2.5% max.) during the measurement. All intensities were corrected for Lorentz and polarization factors, absorption correction was omitted.

The structure was solved by the Patterson and Fourier techniques. Positions of the non-hydrogen atoms were anisotropically refined by a 9×9 block-diagonal matrix technique employing the least-squares minimizing function $\sum w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ and the unit weighting scheme. The positions of hydrogen atoms obtained from the difference map, their coordinates and thermal parameters were fixed with $B=5.0 \AA^{2}$ (ref. ${ }^{2}$). The final values of $R^{*}:=0.08$ and $w R^{* *}=0.091$. Difference map of the residual electron density had maximum 0.4 and minimum $0.7 \mathrm{e}^{\AA^{-3}}$ in proximity of the chlorine atom. Calculations were carried out with an M40-30 ccmputer and tiing the NRC crystallegraphic programmes ${ }^{5,6}$ and the PARST programme ${ }^{6}$. Scattering factors were collected from the International Tables for X-ray Crystallography ${ }^{7}$. The basic crystallographic data of N -(2,6 -di-methylphenyl)chloromaleinimide are presented in Table I. The refined pusitions of non-hydrogen atoms are listed in Table II, the bond distance and valence angles in Tables III and IV. Anisotropic thermal parameters of non-hydrogen atoms, coordinates of hydrogen atoms and tables of observed and calculated structure factors are available from the authors on request.

DISCUSSION

The crystal structure of N -(2,6-dimethylphenyl)chloromaleinimide consists of monomeric units showing interactions of $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{C}$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ types. The most noticeable of them, up to $3.0 \AA$ are summarized in Table V. Fig. 1 shows the distri-

[^0]bution of molecules in the unit cell. Due to a clear drawing, four molecules related by the symmetry centres were not included. The whole molecule was tested for planarity: one least square plane was fitted through the five-membered ring of maleinimide

Table I
Basic crystallographic data for N -(2,6-dimethylphenyl)chloromaleinimide

Crystallographic system	Orthorhombic
Space group	$P b c a$
Parameters of the unit cell	$a=13.622(4) \AA$
	$b=13.483(7)$
	$c=12.768(6)$
Unit cell volume	$V=2345(2) \AA^{3}$
Calculated crystal density	$1.34 \mathrm{Mg} \mathrm{m}^{-3}$
Experimental crystal density	$1.36(2)$
Number of electrons per unit	$F(000)=976$
Melting point	$95^{\circ} \mathrm{C}$
Linear absorption coefficient	$\mu=2.80 \mathrm{~mm}^{-1}$

Table II
Atomic coordinates (. 10^{4}) and equivalent isotropic thermal parameters $B_{\text {eq }}$ with standard deviations in parentheses $B_{\mathrm{eq}}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} a_{i} \cdot a_{j}$

Atom	x	y	z	$B_{\text {eq }}, \AA^{2}$
Cl	$4056(1)$	$3808(1)$	$4407(1)$	$6 \cdot 18(4)$
$\mathrm{O}(1)$	$4950(2)$	$3301(2)$	$6599(2)$	$4 \cdot 26(8)$
$\mathrm{O}(2)$	$6602(2)$	$1077(2)$	$4582(2)$	$5 \cdot 35(8)$
$\mathrm{N}(1)$	$5941(2)$	$2118(2)$	$5836(2)$	$3 \cdot 26(8)$
$\mathrm{C}(1)$	$4918(3)$	$2953(3)$	$4717(3)$	$3 \cdot 93(9)$
$\mathrm{C}(2)$	$5212(3)$	$2857(2)$	$5825(3)$	$3 \cdot 39(8)$
$\mathrm{C}(3)$	$6062(3)$	$1756(3)$	$4806(3)$	$3 \cdot 72(8)$
$\mathrm{C}(4)$	$5367(3)$	$2307(3)$	$4117(3)$	$3 \cdot 60(8)$
$\mathrm{C}(5)$	$6429(3)$	$1777(3)$	$6750(3)$	$3 \cdot 53(9)$
$\mathrm{C}(6)$	$6089(3)$	$840(2)$	$7205(3)$	$3 \cdot 61(9)$
$\mathrm{C}(7)$	$6594(3)$	$528(3)$	$8080(3)$	$5 \cdot 05(12)$
$\mathrm{C}(8)$	$7331(3)$	$1024(3)$	$8500(4)$	$5 \cdot 55(13)$
$\mathrm{C}(9)$	$7655(3)$	$1906(3)$	$8084(3)$	$5 \cdot 50(13)$
$\mathrm{C}(10)$	$7218(3)$	$2273(3)$	$7188(3)$	$4 \cdot 33(11)$
$\mathrm{C}(11)$	$5231(3)$	$308(3)$	$6712(3)$	$5 \cdot 00(11)$
$\mathrm{C}(12)$	$7520(4)$	$3283(4)$	$6698(4)$	$6 \cdot 08(13)$

constructed from $C(1), C(2), N, C(3)$, and $C(4)$ atoms, the second one through the phenyl ring constituted by $C(5), C(6), C(7), C(8), C(9)$, and $C(10)$ atoms. Table VI

Table III
Bond distances (\AA) with standard deviations in parentheses

Bond	Bond length	Bond	Bond length
$\mathrm{Cl}-\mathrm{C}(1)$	$1 \cdot 639(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 465(7)$
$\mathrm{C}(1)-\mathrm{C}(4)$	$1 \cdot 310(3)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1 \cdot 509(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 476(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 378(3)$
$\mathrm{C}(2)-\mathrm{O}(1)$	$1 \cdot 209(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 320(4)$
$\mathrm{C}(2)-\mathrm{N}$	$1 \cdot 407(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 376(8)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1 \cdot 490(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 381(6)$
$\mathrm{C}(3)-\mathrm{O}(2)$	$1 \cdot 209(3)$	$\mathrm{C}(10)-\mathrm{C}(12)$	$1 \cdot 553(3)$
$\mathrm{C}(3)-\mathrm{N}$	$1 \cdot 412(5)$	$\mathrm{C}(10)-\mathrm{C}(5)$	$1 \cdot 384(3)$
$\mathrm{N}-\mathrm{C}(5)$	$1 \cdot 419(3)$		

Table IV
Bond and torsion angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses

Atoms	Angle	Atoms	Angle
	Bond angles		
$\mathrm{Cl}-\mathrm{C}(1)-\mathrm{C}(2)$	$118 \cdot 1(3)$	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$106 \cdot 4(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$112 \cdot 1(3)$	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(10)$	$122 \cdot 6(3)$
$\mathrm{Cl}-\mathrm{C}(1)-\mathrm{C}(4)$	$129 \cdot 8(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	$119 \cdot 3(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$131 \cdot 4(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$115 \cdot 3(3)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(1)$	$105 \cdot 2(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$125 \cdot 5(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$123 \cdot 4(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$121 \cdot 6(4)$
$\mathrm{N}-\mathrm{C}(3)-\mathrm{C}(4)$	$107 \cdot 7(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$123 \cdot 7(4)$
$\mathrm{N}-\mathrm{C}(3)-\mathrm{O}(2)$	$123 \cdot 5(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119 \cdot 5(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(2)$	$128 \cdot 7(3)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$119 \cdot 7(4)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(3)$	$108 \cdot 5(3)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(12)$	$117 \cdot 8(3)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(5)$	$124 \cdot 6(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$122 \cdot 3(4)$
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5)$	$126 \cdot 8(3)$		
		Torsion angles	
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(10)$	$-81 \cdot 9(5)$	$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(10)$	$101 \cdot 1(4)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	$100 \cdot 5(4)$	$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	$-76 \cdot 5(4)$

lists deviations of these and some further atoms from the above-mentioned planes. Both rings are virtually planar, the maximum deviation from the central planes revealed $C(1) 0.019(4) \AA$ and $C(10) 0.016(4) \AA$. The $C(11)$ and $C(12)$ carbon atoms of methyl groups are out of the phenyl ring plane by $-0.023(4) \AA$ and $-0.047(5) \AA$, respectively, to the same side, while the chlorine atom is located on the opposite side of the maleinimide plane than the both oxygens; their deviations are: $\mathrm{Cl} 0.037(1)$ $\AA, O(1)-0.022(3) \AA, O(2)-0.050(3) \AA$. The $C(5)-N(1)$ bond lenght $(1.419 \AA)$ is greater than that $(1.405 \AA)$ of α, α-dichloro- p-nitroacetanilide ${ }^{4}$. Dihedral angle between the phenyl and maleinimide rings of the title compound was found to be 78.3°. This was also corroborated by torsion angles $\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ between both moieties of the molecule corresponding approximately to 4% of the π-bond ($\cos ^{2}$

Table V
Intermolecular interactions smaller than $3 \AA$ of types $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{C}$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$

Interaction	Distance	Interaction	Distance
$\mathrm{O}(1) \ldots \mathrm{H}(4)-\mathrm{C}(11)^{\mathrm{i}}$	$2 \cdot 580(3)$	$\mathrm{O}(1) \ldots \mathrm{H}(7)-\mathrm{C}(9)^{\mathrm{iii}}$	$2 \cdot 614(2)$
$\mathrm{O}(1) \ldots \mathrm{H}(1)-\mathrm{C}(4)^{1 i}$	$2 \cdot 275(2)$	$\mathrm{O}(1) \ldots \mathrm{H}(9)-\mathrm{C}(12)^{\mathrm{iii}}$	$2 \cdot 827(3)$
$\mathrm{O}(2) \ldots \mathrm{H}(6)-\mathrm{C}(8)^{\mathrm{iv}}$	$2 \cdot 885(3)$		

Symmetry code: i) $1-x, 1 / 2+y, 3 / 2-z$; ii) $x, 1 / 2--y, 1 / 2+z$, iii) $x-1 / 2, y, 3 / 2-z$; iv) $3 / 2-x,-y, z-1 / 2$.

Fig. 1
Projection of the crystal structure of N --(2,6 -dimethylphenyl)chloromaleinimide into the (010) plane
78.3°), whereas that between the phenyl ring and the amide grouping in α, α-dichloro--p-nitroacetanilide is 31.4°, corresponding to 73% of the π-bond. Like values of the $\mathrm{C}--\mathrm{N}$ bond lenght and the dihedral angle between planes were reported for N --methyl-2,4,6-trinitroacetanilide ${ }^{8}\left(1 \cdot 417 \AA\right.$ and $\left.60^{\circ}\right)$, corresponding to 25% of the π-bond.

The bond lenght $C(5)-C(6)$ in the phenyl ring is significantly longer ($1.465 \AA$) probably due to shortening of the single bond between the methyl group $C(11)$ and the carbon of the phenyl ring $C(6)(1.509 \AA)$. This bond is significantly shorter than a standard single bond between two carbons $(1.54 \AA)$.

The distance between $C(1)$ and $C(4) 1 \cdot 310(3) \AA$ found in the maleinimide ring $(1.323 \AA)$ is comparable with that in maleic anhydride $(1.303 \AA)$, ref. ${ }^{9}$. The mean lenght of a single $C-C$ bond in the maleinimide ring ($1.483 \AA$) is close to that in 1,3-butadiene ($1.47 \AA$), ref. ${ }^{10}$ and to the mean bond lenghts $1.483(15) \AA$ reported in the literature ${ }^{11}$. A further evidence for the double character of the $\mathrm{C}(1)-\mathrm{C}(2)$ and $C(3)-C(4)$ bonds provided the outer bond angle at atoms $C(2)$ and $C(3)$. The $\mathrm{N}-\mathrm{C}-\mathrm{O}$ angles are by 5° or 8° smaler than the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles. The double $\mathrm{C}=\mathrm{O}$ bond lenghts $(1.209 \AA)$ are in a good agreement with the standard bond lenght ($1.208 \AA$) generally accepted for a double bond.

The crystal structure packing is ensured by intermolecular van der Waals-type interactions. The strongest interactions were found between $\mathrm{O}(1) \cdots \mathrm{H}(4)-\mathrm{C}(11)$ $(2.580 \AA), \mathrm{O}(1) \cdots \mathrm{H}(1)-\mathrm{C}(4)(2.275 \AA)$ and $\mathrm{O}(1) \cdots \mathrm{H}(7)-\mathrm{C}(9)(2.614 \AA)$. These

Table VI
Optimal least squares planes fitted through atoms in the molecule. Each plane is defined as AX + $+\mathrm{B} Y+\mathbf{C Z}=\mathrm{D}$. Standard deviations are in parentheses

Atoms	Deviation from the plane, \AA	Atoms	Deviation from the plane, \AA
	ane I^{a}		ne $\mathrm{II}^{\text {b }}$
C(1)	0.019(4)	C(5)	--0.009(4)
C(2)	-0.015(4)	C(6)	-0.001(3)
N	$0.006(3)$	C(7)	0.005(4)
C(3)	$0.004(4)$	C(8)	$0.001(5)$
C(4)	-0.015(4)	C(9)	-0.012(4)
Cl	$0.037(1)$	C(10)	$0.016(4)$
$O(1)$	$-0.022(3)$	C(11)	$-0.023(4)$
O(2)	-0.050(3)	C(12)	-0.047(5)
C(5)	-0.026(4)	N	$0 \cdot 005(3)$

[^1]distances are within the interval of the sum of van der Waals' radii for these atoms $(2.60 \AA)$, as given by Pauling ${ }^{12}$.

REFERENCES

1. Kellö E., Kettmann V., Miertuš S., Vrábel V., Konečný V.: Collect. Czech. Chem. Commun. 51, 1864 (1986).
2. Vrábel V., Pavelčik F., Kellö E., Miertuš S., Koně̌nŷ V., Lokaj J.: Collect. Czech. Chem. Commun. 50, 1619 (1985).
3. Chatterjee C., Dattagupta J. K., Saha N. N., Saenger W., Muller K.: J. Cryst. Mol. Struct. 9, 295 (1979).
4. Amitabha De., Basak A. K., Chaudhuri S., Poddar G.: Acta Crystallogr., C 40, 2104 (1984).
5. Ahmed F. R. in: Computing Method in X-Ray Crystallography, p. 53. NRC, Ottawa, Canada 1970.
6. Nardelli M.: PARST. A System of Computer Routins for Calculating Molecular Parameters from Results of Crystal Structure Analysis. University of Parma, Italy 1984.
7. International Tables for X-Ray Crystallography, Vol. III., p. 202. Kynoch Press, Birmingham 1968.
8. Christoph C. G., Fleischer R. A.: Acta Crystallogr., B 29, 121 (1973).
9. Marsh R. E., Ubell E., Wilcox H. E.: Acta Crystallogr. 15, 35 (1962).
10. Schomaker V., Pauling L.: J. Chem. Soc. 61, 1769 (1939).
11. Allen F. H., Kennard O., Watson D. V., Bramer L., Orpen A. G., Taylor R.: J. Chem. Soc., Perkin Trans. 2, 1987, S1.
12. Pauling L. in: The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca, Cornell Univ. Press 1967.

Translated by Z. Voticky.

[^0]: * $\quad R-\sum|\Delta F| / \sum\left|F_{\mathrm{o}}\right|$.
 ** $\quad u R=-\left(\left.\sum w \Delta F\right|^{2} / \sum w\left|F_{\mathrm{o}}\right|^{2}\right)^{1 / 2}$.

[^1]: ${ }^{a} 0.709(1) X+0.686(1) Y-0.164(2) Z=6.48(2), \quad X^{2}=5.99 ; \quad{ }^{b} 0.640(1) X-0.506(1) Y-$ $-0.577(1) Z=-0.57(2), X^{2}=7.81$; dihedral angle between planes I and II is $78.3(1)^{\circ}$.

